Orthogonal Range Queries: Basic Methods

Timothy Chan

MADALGO Summer School'10 (Mon. Morning I)

Orthogonal Range Searching

 $P(n) = O(n \log n), S(n) = O(n), Q(n) = O(\log n [+ k])$

• 2D??

Method 0: k-d Tree

- Divide by median-x,
- Then by median-y,

p₁

• Then by median-x, Etc.

p₃ p₂ p₄ p₇ p₈ p₅

 p_6

• Rmk: not good! & worse in higher-D: $Z(n) = 2^{d-1} Z(n/2^d) + O(1) \implies O(n^{1-1/d})$

Higher-D

- $S_d(n) = 2S_d(n/2) + S_{d-1}(n)$
- $Q_d(n) = O(Q_{d-1}(n) \log n)$
- $\Rightarrow S_{d}(n) = O(S_{d-1}(n) \log n) \Rightarrow S_{d}(n) = O(n \log^{d-1} n)$ $Q_{d}(n) = O(Q_{d-1}(n) \log n) \Rightarrow Q_{d}(n) = O(\log^{d-1} n)$

- Rmks:
 - Example of "multi-level" data structure
 - Dynamic: query/update time O(log^d n) by standard balanced tree techniques
 O(log^{d-1}n loglog n)

by dynamic fractional cascading

- (Mild) trade-off: by degree-b range tree $S(n) = O(n (\log_b n)^{d-1}), Q(n) = O((b \log_b n)^{d-1})$ or S(n) = O(n (b log_b n)^{d-1}), Q(n) = O(log n (log_b n)^{d-2})

Recap:

Orthogonal range searching:
 O(n log^{d-1} n) space, O(log^{d-1} n) time

Next:

 Improvements, by starting with better base cases (1D, 2D, 3D)??

Orthogonal Range Queries: 3D Reporting

(Mon. Morning II)

- Goal: 3D reporting
 O(n polylog n) space, O(loglog U + k) time?
- Warm-up: 2D dominance emptiness

• 3D dominance emptiness

Orthogonal 2D Point Location

Store n disjoint rectangles in 2D s.t. can locate rectangle containing query pt

[non-orthogonal pt location: wait till Wed. (John)...]

- Previous methods: (Dietz'89/de Berg-van Kreveld-Snoeyink'95)
 O(n) space, O((loglog U)²) time
- Brand new method: (Chan'11...)
 O(loglog U) time!

Recursive Method: 1st Attempt

- Assume universe is $W \times H$ (initially W = H = U)
- Idea: use n^{1/2} x n^{1/2} grid, like Alstrup-Brodal-Rauhe (column width W/n^{1/2}, row height H/n^{1/2})
- For each column/row, recurse on all rectangles that have a vertex inside the column/row (each rectangle stored ≤ 4 times)
- For each grid cell, remember in table
 if it is covered by a rectangle, or
 if a horizontal or vertical edge cuts thru it

• $Q(n,W,H) = O(1) + max\{Q(n_i, W/n^{1/2}, H), Q(n_j, W, H/n^{1/2})\}$ locate grid cell 1 recursive call only!

- $Q(n,W,H) = O(1) + max\{Q(n_i, W/n^{1/2}, H), Q(n_i, W, H/n^{1/2})\}$
- Rmks:
 - as n gets smaller relative to W,H, recursion doesn't shrink W,H as much...
 - could apply rank space reduction to equalize n & W,H but cost extra loglog factor due to van Emde Boas!

Recursive Method: 2nd Attempt

 Idea: imitate van Emde Boas divide into W^{1/2} columns (of width W^{1/2})

- Build hash table for D = all "nonempty" columns
- Recurse w. rounded input

+ Recurse on universe with empty columns removed

(each rectangle stored ≤ 2 times)

• $Q(n,W,H) = O(1) + Q(n, nW^{1/2}, H)$

- $Q(n,W,H) = O(1) + Q(n, nW^{1/2}, H)$
- Or $Q(n,W,H) = O(1) + Q(n, n, nH^{1/2})$
- Rmk: but this recursion can't shrink W,H to const!

Summary So Far...

• Method 1:

 $Q(n,W,H) = O(1) + max\{Q(n_i, W/n^{1/2}, H), Q(n_i, W, H/n^{1/2})\}$

• Method 2a:

 $Q(n,W,H) = O(1) + Q(n, nW^{1/2}, H)$

• Method 2b:

 $Q(n,W,H) = O(1) + Q(n, n, nH^{1/2})$

Final Method: just combine!!
 If n ≥ W^{1/3} & n ≥ H^{1/3} then Method 1
 If n < W^{1/3} then Method 2a; if n < H^{1/3} then Method 2b

 $Q(n,W,H) = O(1) + max\{Q(n_i, W^{5/6}, H), Q(n_j, W, H^{5/6})\}$

$$\begin{aligned} &Q(n,W,H) = O(1) + \max\{ Q(n_i, W^{5/6}, H), Q(n_j, W, H^{5/6}) \} \\ &\Rightarrow O(\log\log W + \log\log H) = O(\log\log U) \end{aligned}$$

•
$$S(n) = O(4^{O(\log \log U)} n) = O(n \text{ polylog } U)$$

• Rmk: can reduce space to O(n) by more work...

In Conclusion...

- 3D dominance emptiness:
 O(n polylog n) space, O(loglog U) time
- 3D dominance reporting: similarly, w. additional ideas (Tues. afternoon), O(n polylog n) space, O(loglog U + k) time
- \Rightarrow 3D general reporting:

by adding sides w. 3 extra log factors in space, O(n polylog n) space, O(loglog U + k) time

[can save space by Alstrup-Brodal-Rauhe idea (Karpinski-Nekrich'10)...]

• Higher-D reporting:

by range trees w. d-3 extra log factors in space & time, O(n polylog n) space, O(log^{d-3} n loglog n + k) time

by degree-b range trees w. b=log^ε n, O(n polylog n) space, O((log n/loglog n)^{d-3} loglog n + k) time current record query time!

> End of Orthogonal Range Query Upper Bounds

[why not O(loglog U) in 4D?? wait for Tues. (Mihai)...]

Non-Orthogonal Range Queries

(Mon. Afternoon II + Tues. Afternoon I + II)

Simplex Range Searching

• An illustrative case: 2D halfplane counting

History in 2D

- S(n) P(n)Q(n)n^{0.793} Willard'82 n • n^{0.774} n n^{0.695} Edelsbrunner-Welzl'86 n n^{0.667} (rand.) Haussler-Welzl'87 n $n^{1/2} \log n$ Welzl'88 lacksquaren n^{1/2+ε} n^{1+ε} n^{1+ε} Chazelle-Sharir-Welzl'92 • n^{1/2} polylog n Matoušek'92 n log n n • n^{1+ε} n^{1/2} Matoušek'93 n \bullet n^{1/2} Chan'10 (rand.) n log n • n n^{1-1/d}
 - (near opt.)

- Clarkson'87
- Chazelle'93/Matoušek'93

• Trade-off

m (n / m^{1/d}) log^{d+1}n (near opt.)

Method 0 (Willard'82)

• "Ham-Sandwich Cut" Thm: Given 2 point sets P & Q in 2D,

"ham"

"bread"

∃ line that simultaneously bisects P & Q

• Pf Sketch: Given dir. v, let l_P = line bisecting P along dir v l_Q = line bisecting Q along dir v

Corollary: Given n points P in 2D,
 3 2 lines which partition P into 4 subsets of n/4 points

- Recurse \Rightarrow "partition tree"
- S(n) = O(n)
- $P(n) = 4 P(n/4) + O(n) \implies O(n \log n)$

Megiddo'85

• Halfplane query: Q(n) = 3 Q(n/4) + O(1) ⇒ O(n^{log₄ 3}) ≈ O(n^{0.793})

- Triangle query: Q(n) = O(# cells crossing ∂q) = O(3 · # cells crossing a line) = O(n^{0.793})
- Rmks: work also in 3D (8-partitioning), but not in 5D, ... in 2D, improve by partitioning into > 4 cells??

Method 1 (Dual)

Def: Given point p = (a,b), define its dual line p^* : y = ax-bGiven line ℓ : $y = \alpha x - \beta$, define its dual point $\ell^* = (\alpha, \beta)$

above query line

given n lines, count lines below query pt

 Lemma: Given n lines in 2D, can cut the plane into 4 cells s.t. each cell intersects ≤ 3n/4 lines

- Recurse \Rightarrow "cutting tree"
- S(n) = 4 S(3n/4) + O(1) $\Rightarrow O(n^{\log_{4/3} 4}) \approx O(n^{4.82})$
- Count # lines below query pt: Q(n) = Q(3n/4) + O(1) $\Rightarrow O(\log n)$

 Rmks: more complicated in higher-D... (Megiddo'84/Dyer'86) in 2D, improve by cutting into > 4 cells??

Method 2 (Clarkson'87)

by Chazelle-Friedman'90 (bound is tight)

- Cutting Lemma: Given n lines in 2D, can cut into O(r²log²r) disjoint cells s.t. each cell intersects O(n/r) lines "(1/r) cutting"
- Pf: Idea: "probabilistic method" ("ε-net"-type argument) Take random sample R of size cr Return a triangulation T(R) of the arrangement of R

Success if every edge of T(R) intersects $\leq n/r$ lines

- Fix a line segment uv that intersects > n/r lines
- Pr{uv appears in T(R)}
 <≈ (cr/n)⁴ (1 cr/n)^{n/r}

• Pr{failure} <~ $n^4 \cdot (cr/n)^4 (1 - cr/n)^{n/r}$ <~ $(cr)^4 / e^c << 1$ by setting c ~ 100 log r Q.E.D.

- Recurse \Rightarrow cutting tree
- $S(n) = Cr^2 S(n/r) + O(r^2)$ $\Rightarrow O(n^{\log(Cr^2)/\log r}) = O(n^{2 + \log C/\log r}) \Rightarrow O(n^{2+\epsilon})$ by setting r = suff large const
- Halfplane query: $Q(n) = Q(n/r) + O(r^2) \implies O(\log n)$

• Rmks: extends to triangle query by multi-level... Q(n) = O(polylog n)in higher-D: $S(n) = Cr^d S(n/r) + O(r^d) \implies O(n^{d+\epsilon})$

Recap:

- Simplex range searching (2D):
 - Method 0 (Willard's partition tree):
 O(n) space, O(n^{0.793}) time
 - Method 1 (cutting tree):
 - O(n^{4.82}) space, O(polylog n) query time
 - Method 2 (Clarkson):

improve space of Method 1 to near $O(n^2)$

Next:

– improve time of Method 0 to $O(n^{1/2})$??

Method 3 (Matoušek'92)

- Back in primal...
- Partition Thm: Given n pts in 2D, can partition into t subsets of $\Theta(n/t)$ pts & enclose each subset P_i in a cell Δ_i s.t. any line crosses O(t^{1/2}) cells "crossing #" 0 \bigcirc 0 (bound is tight) 0 0 0 0 \circ 0 \circ 0 \circ \bigcirc 0 0 \bigcirc

[Corollary: matching & spanning tree w. crossing # O(n^{1/2})]

- Recurse \Rightarrow partition tree
- S(n) = O(n)
- Halfplane/triangle query: $Q(n) = Ct^{1/2} Q(n/t) + O(t)$ $\Rightarrow O(n^{\log(Ct^{1/2})/\log t}) = O(n^{1/2 + \log C/\log t}) \Rightarrow O(n^{1/2+\epsilon})$ by particular constrained to a suff large const

by setting t = suff large const

• Or set
$$t = n^{\epsilon}$$

 $\Rightarrow O(C^{O(\log \log n)} n^{1/2}) = O(n^{1/2} \operatorname{polylog} n)$

• Rmk: in higher-D: $Q(n) = Ct^{1-1/d} Q(n/t) + O(t) \implies O(n^{1-1/d} \text{ polylog } n)$

Pf of Matoušek's Partition Thm

- Suffice to prove crossing # for a finite set L of m "test lines" (m = O(n²)) O(t)
- Intuition:
 - 1. Apply cutting lemma to L with $r = t^{1/2}$ \Rightarrow # cells O(r²) = O(t)
 - 2. Subdivide cells to ensure each has O(n/t) pts $\Rightarrow O(t)$ extra cuts
 - 3. Total crossings between lines & cells

$$= O(t \cdot m/r) = O(m t^{1/2})$$

 \Rightarrow average # crossings per line = O(t^{1/2})

• Challenge: turn average to max??

- Idea: "iterative reweighting" (Welzl'88)
- Maintain a multiset L[#] initially containing L (multiplicity 1)

"weight"

- For i = t, ..., 1 do: // assume i(n/t) pts remain
 - 1. Apply cutting lemma to L[#] with $r = ci^{1/2}$ \Rightarrow # cells O(r^2) \leq i
 - 2. Pick cell Δ_i containing \geq n/t pts
 - 3. Shrink Δ_i s.t. it contains exactly n/t pts P_i & remove P_i
 - 4. For each ℓ in L crossing Δ_i double multiplicity of ℓ in L[#]
- Analysis:

$$\begin{split} |\{\ell \text{ in } L^{\#}: \ \ell \text{ crosses } \Delta_i\}| &\leq |L^{\#}| / r = O(|L^{\#}| / i^{1/2}) \\ \Rightarrow |L^{\#}| \text{ increases by a factor of } 1 + O(1/i^{1/2}) \end{split}$$

 \Rightarrow |L[#] | increases by a factor of 1 + O(1/i^{1/2})

• Final value of $|L^{\#}| \le m \prod_{i=t,...,1} [1 + O(1/i^{1/2})]$

$$\leq m \exp(O(\Sigma_{i=t,...,1} 1/i^{1/2}))$$

= $m \exp(O(t^{1/2}))$

- Final multiplicity of $\ell = 2^{crossing \# of \ell}$
 - ⇒ max crossing # ≤ log (final value of $|L^{#}|$) ≤ O(log m + t^{1/2}) ≤ O(t^{1/2}) Q.E.D.

New Method (C'10)

- Idea: instead of recursion, apply iterative reweighting to an entire level of the partition tree
- Partition Refinement Thm: Given a partition with t disjoint cells each with O(n/t) pts s.t. crossing # is Z, can subdivide each cell into O(b) disjoint subcells each with O(n/bt) pts s.t. overall crossing # is

 $O((bt)^{1/2} + Z + b \text{ polylog n})$

• Repeat level by level \Rightarrow partition tree

•
$$Z(bt) = O(Z(t) + (bt)^{1/2} + b \text{ polylog n})$$

i.e., $Z(u) = C Z(u/b) + O(u^{1/2})$
 $\Rightarrow Z(u) = O(u^{1/2})$
by setting b – suff large const

by setting b = suff large const

•
$$Q(n) = O(\sum_{t=1,b,b^2,...} Z(t)) = O(n^{1/2})$$
 (no extra logs!)

• Rmk: in higher-D, $Z(u) = Cb^{1-1/(d-1)} Z(u/b) + O(u^{1-1/d}) \implies O(n^{1-1/d})$

Pf of Partition Refinement Thm

Refined Cutting Lemma: Given n lines in 2D & triangle Δ with X intersections inside, can cut Δ into O(r + X (r/n)²) disjoint cells s.t. each cell intersects ≤ n/r lines

complexity of arrangement of sample R of size r

- Maintain multiset L[#]
- For i = t,...,1 do: // assume i cells remain
 - 1. Pick a remaining cell Δ_i with $X_i \leq O(|2!|^2 / i)$ intersections inside & with $m_i \leq O(|1!|^2! |2! / i)$ lines crossing it
 - 2. Apply cutting lemma to $L^{\#}$, Δ_i with $r = m \ln \{m_i(b/X_i)^{1/2}, b\}$ $\Rightarrow \#$ subcells $O(r + X_i (r/m_i)^2) = O(b)$
 - 3. Further subdivide s.t. each subcell of Δ_i has O(n/bt) pts \Rightarrow O(b) extra cuts
 - 4. For each ℓ in L

multiply multiplicity of ℓ in L[#] by $(1+1/b)^{z_i(\ell)}$ where $z_i(\ell) = \#$ new subcells of Δ_i crossed by ℓ

• Analysis:

 $\sum_{\ell \text{ in } L^{\#}} z_i(\ell) \leq O(b \cdot m_i / r) \leq O(b \cdot [(X_i / b)^{1/2} + m_i / b])$

$$\begin{split} \sum_{\ell \text{ in } L^{\#}} z_i(\ell) &\leq O(b \cdot m_i/r) \leq O(b \cdot [(X_i/b)^{1/2} + m_i/b]) \\ \Rightarrow \text{ increase in } |L^{\#}| &= \sum_{\ell \text{ in } L^{\#}} [(1+1/b)^{z_i(\ell)} - 1] \\ &\leq O\left(\sum_{\ell \text{ in } L^{\#}} z_i(\ell)/b\right) \\ &\leq O((X_i/b)^{1/2} + m_i/b) \\ &\text{ [recall } X_i \leq O(|L^{\#}|^2/i), \ m_i \leq O(|L^{\#}|Z/i)] \\ &\leq O(|L^{\#}|/(bi)^{1/2} + |L^{\#}|Z/(bi)) \end{split}$$

• Final value of $|L^{\#}| \le m \prod_{i=t,...,1} [1 + O(1/(bi)^{1/2} + Z/(bi))]$ $\le m \exp(O(\sum_{i=t,...,1} [1/(bi)^{1/2} + Z/(bi)]))$

= $m \exp(O((t / b)^{1/2} + (Z \ln t) / b))$

=
$$m \exp(O((t / b)^{1/2} + (Z \ln t) / b))$$

- Final multiplicity of $\ell = (1+1/b)^{crossing \# of \ell}$
 - ⇒ max crossing # ≤ O(b log (final value of $|L^{#}|$)) ≤ O(b log m + (bt)^{1/2} + Z ln t) Q.E.D.

by more work

• Rmk: P(n) = O(n log n) requires yet more work...

Recap:

 Simplex range searching: O*(n^d) space, O(polylog n) query time or O(n) space, O(n^{1-1/d}) time

Next:

• Extensions & applications...

Extension 0: Dynamic

- Insertion: the "logarithmic method" (Bentley, Saxe'80)
 - Insert by building new subset of size 1
 - While ∃ 2 subsets of size 2ⁱ
 merge by building
 new subset of size 2ⁱ⁺¹
 - Total insert time = $O(\Sigma_i (n/2^i) 2^i \log 2^i) = O(n \log^2 n)$ \Rightarrow amort. time $O(\log^2 n)$
 - Query is "decomposable": $Q(n) = O(\Sigma_i(2^i)^{1-1/d}) = O(n^{1-1/d})$
- Deletion: be lazy...

Extension 1: Trade-Offs

• Combine...

Extension/Appl'n 2: Off-Line Problems

 Ex: Given n lines & n pts in 2D, count # of pairs (p, l) s.t. point p is above line l ("Hopcroft's problem")

$$O^*(m + n \cdot n/m^{1/2}) = O^*(n^{4/3})$$

by setting m = n^{4/3}

 Rmks: alg'mic pfs of combinatorial geometry problems lots & lots of other appl'ns... (sometimes cutting lemma suffices) in higher-D, O*(m + n ⋅ n/m^{1/d}) ⇒ O*(n^{2 - 2/(d+1)})

Extension/Appl'n 3: Multi-Level Data Structures

• Ex A: Count all line segments intersecting query line

- Build partition tree for red pts, where each node stores a partition tree for a subset of blue pts ("canonical subset")
- $S(n) = t S(n/t) + O(t \cdot n/t) \Rightarrow O(n \log n)$ • $Q(n) = Ct^{1/2} Q(n/t) + O(t \cdot (n/t)^{1/2}) \Rightarrow O^*(n^{1/2})$
- $Q(n) = Ct^{1/2}Q(n/t) + O(t \cdot (n/t)^{1/2}) \Rightarrow O^*(n^{1/2})$ by setting t = suff large const

• Ex B: Count all line segments intersecting query line segment

- Build partition tree for dual of input lines, where each node stores data structure from Ex 1 for a canonical subset
- $S(n) = t S(n/t) + O(t \cdot (n/t) \log (n/t)) \implies O(n \log^2 n)$
- $Q(n) = Ct^{1/2}Q(n/t) + O^*(t \cdot (n/t)^{1/2}) \Rightarrow O^*(n^{1/2})$ by setting t = suff large const

• Ex C: (Off-line problem) Given n line segments in 2D, count total # intersections

$$\Rightarrow$$
 O*(n^{4/3}) time alg'm

[Open: $O(n^{4/3})$ without extra factors?]

Extension 4: Non-Linear Ranges

1. By change of variables ("linearization")

Ex A: 2D disk counting

 \Rightarrow 3D halfspace counting: S(n) = O(n), Q(n) = O*(n^{2/3})

 \Rightarrow 4D halfspace counting: S(n) = O(n), Q(n) = O*(n^{3/4})

 By directly extending partition thm, using combinatorial analysis of arrangements of surfaces (Agarwal-Matoušek'94)

$$S(n) = O(n), Q(n) = O^*(n^{1-1/b})$$

where b = d if d ≤ 4; b = min{ 2d - 4, $\lfloor (d + \ell)/2 \rfloor$ else
vars # vars after
linearization

Extension 5: Halfspace Reporting

• Warm-up: 2D halfspace emptiness

S(n) = O(n) $Q(n) = O(\log n)$

- 3D halfspace emptiness
 - same (reduces to 2D point location in dual)

3D Halfspace Reporting (C'00)

 Shallow Cutting Lemma: (Matoušek'92) Given n planes in 3D, can cover all "(n/r)-shallow" pts with O(r) disjoint vertical cells s.t. each cell intersects O(n/r) planes

For r = 1, 2, 4, ... do: apply cutting lemma for r store list L_{Δ} of planes intersecting each cell Δ

$$S(n) = O(\Sigma_r r \cdot n/r) = O(n \log n)$$

• Query: take $r \approx n/k$ $Q(n) = O(\log n + n/r) = O(\log n + k)$ point location linear search to find Δ (John) in L_{Δ}

- Rmks: same approach works for 3D dominance reporting... can reduce space to O(n loglog n) by C'00/Ramos'99 & to O(n) by Afshani-C'09
- Higher-D halfspace reporting:
 - By shallow versions of cutting lemma & partition thm
 - Matoušek'92 & Ramos'99/Afshani-C'09: $S(n) = O(n), Q(n) = O(n^{1-1/\lfloor d/2 \rfloor} \text{ polylog } n + k) \text{ for any } d$
 - C'10:

 $S(n) = O(n), Q(n) = O(n^{1-1/\lfloor d/2 \rfloor} + k \text{ polylog } n)$ for even d

- Open: $O(n^{1-1/\lfloor d/2 \rfloor} + k)$? Same for odd d? Lower bds?
- Lots of appl'ns: ray shooting, LP queries, exact nearest neighbor search, convex hull alg'ms, …

• An Open Problem: off-line halfspace counting for pts in convex position in d-D?

The End